创建或修改目录:/www/wwwroot/104.219.215.234/data 失败!
窦杰,籍贯江苏徐州,东京大学博士,日本学术振兴会(JSPS)商量员、博士生导师、博士后谐和导师、造就,入选国度高级次东说念主才、湖北省高级次东说念主才规划、武汉市英才规划 性爱大师影音、中国地质大学(武汉)百东说念主规划、地大学者学科骨干东说念主才、翻新群体中枢骨干。获日本第17届地震工程大会- Early Career Award、第 18 届留日中国东说念主 优秀商量.翻新效用赏赐奖、不时入选中国爱念念维尔高被引学者与人人前2%顶尖科学家榜单。担任新西兰皇家学会、湖北省科技厅、广东省科技厅、江西省科技厅、栽培部学位与商量生栽培发展中心通信评议众人。
先后任东京大学空间谍报中心博士后,日本国度国立商量开导法东说念主土木商量所商量员,日本学术振兴会商量员。从事地质灾害东说念主工智能大数据及贤达风险管控、数值模拟和遥感与GIS在降雨-地震-东说念主工诱发的地质灾害诈欺。当作样子郑重东说念主(PI)主握并率领了10余项科研样子,主若是受日本国土交通(MLIT)部和日本文部省的资助,还郑重土木商量所火山小组雷达的商量责任(由日本宇航天局签署的雷达影像在防灾中的诈欺)。迄今已发国际刊物、书章和会议120余篇,其中SCI 55余篇,第一作家及通信30余篇,发表在 Earth-Science Reviews, Water Research, Landslides, Journal of Hydrology, Science of The Total Environment, Remote sensing of Environment,Environmental Modelling & Software, Nature Scientific Reports, Remote Sensing & Natural hazards 等多 个国际学术刊物上,两篇文章分手入选2019年百篇顶级当然科学阐明和SCI-TAO杂志最多援用奖,13篇ESI 1%高被引,2篇ESI 0.1%热门论文,Google scholar援用6000次,担任国际SCI期刊Frontiers in Earth Science副主编,担任Geocarto International , Geomatics, Natural Hazards and Risk, Journal Mountain of Science, The Global Environmental Engineers等多个国际期刊编委,担任Remote Sensing主题裁剪和Frontiers in Earth Science前沿裁剪,受邀为Engineering Geology, Landslides, Earth-Science Reviews 等40多 个国际SCI期刊审稿,授权发明专利和软著15 项,在日土产货球行星科学会议、地球科学论坛上等大型会议被当作邀请嘉宾作阐明。担任第五届天下 滑坡大会、第三和第四届巴东国际地质灾害学术论坛BIGS2021的大会登科14届国际工程地质大会与环境(IAEG)分会召集东说念主。
个东说念主主页
Google Scholar 主页、 Research Gate 主页、中国地大-国度站主页、 中国地大-异日时代学院 、地质灾害贤达管控课题组 AI-Geohazards 微信公众号
商量地方与好奇艳羡好奇艳羡
主要从事地质灾害东说念主工智能大数据及贤达风险管控,数值模拟和遥感与GIS在降雨-水库-地震-东说念主工诱发的地质灾害关联的掂量预告商量责任。具体包括:
1)基于机器学习识别多源海量遥感影像数据(卫星,航片,雷达SAR, 无东说念主机UAV,激光雷达-LiDAR等)收场快速建无意质灾害库;
2)基于多源地质灾害体的府上(地质,地形地貌,景色水文等)耦合东说念主工智能进行地质灾害风险评估;
3)基于灾害单体或小法式灾地域连结室内现实进行物理经过数值模拟,探明灾害诱发机理和机制;
4)基于大数据耦合物理经过数值模拟的智能地质灾害掂量预告,构建地灾快速响救急预告情势。
招生与培养
招生地方:地质资源与工程,3S时代与地质灾害,AI大数据-诡计机及地形地貌关联的专科。浓烈见谅具有深厚数学功底、诡计机编程智商、力学以及关联专科布景的肯求者。
在外洋生涯学习责任近十年中,与国际上关联地质灾害商量课题组设置了细密的谐和关连,共同商量并发表科研论文。弥远招收具有细密的数学诡计机、数值模拟、3S时代、水文地形地貌、地质灾害基础学问的劳苦勤学的硕士、博士商量生和博士后。咱们浓烈见谅具有科学商量责任柔软和抱负的肯求者加入咱们的团队。
加入咱们,您将有契机成为国度荒野不雅测商量站和栽培部985上风地质灾害平台的一员,并加入AI Geohazards-地质灾害智能管控团队,以地质资源与地质工程A+上风学科为骨干,通过有组织的科研汇聚科学问题,破损地质灾害界限,和会跨限制、跨平台、跨学科的交叉,来解码地质灾害繁难,共同探索地质灾害智能减灾防灾的异日,让咱们联袂用功,为东说念主类的宜居地球而高潮!
终年招生1-3个博士后,1-2博士生,2-4硕士!也见谅优秀本科生加入课题组积极参与科研行径,同期也积极见谅副造就或造就的加入,帮其推选肯求校表里多样东说念主才规划。
见谅参议邮箱:doujie@cug.edu.cn
团队
AI Geohazards-地质灾害贤达管控团队,与日本东京大学、北海说念大学、日本国土交通部技術计谋抽象商量所和土木商量所、好意思国East Carolina University、University of South-Eastern Norway等单元保握弥远的谐和关连,面向国际科学前沿和国度紧要工程的科学问题,存身于三峡于库区,开展地质灾害智能减灾防灾的商量责任。
现在在读:博士二名硕士九名
两名博士后。
学生指示情况
1.2021.11:2020硕士生罗万褀、2021届王锐、何雨健、马豪分手获取第三届巴东国际地质灾害学术论坛,BIGS2021 Poster二等奖、三等奖及优秀奖,向子林并在国际大会BIGS2021作念理论阐明
2.2021.11: 2021届向子林博士生疏别获取三峡中心、中国地质大学2021年科技论文阐明会一等奖和二等奖,2020硕士生罗万褀获取三等奖。
3.2022.10: 2022届博士生张乐乐、2021届王锐获国度站2022年科技论文阐明会二等奖;2021届向子林博士生、2021届硕士生汪恒分手获国度站2022年科技论文阐明会三等奖。
4.指示向子林博士以第一作家发表中科院TOP一区1篇文章,硕士生罗万褀以第一作家发表中科院二区1篇(高被引ESI1%),硕士生郭衍昊和何雨健分手以第一作家发表发表四区各一篇,2022届硕士董傲男以第一作家发表T2一篇。
5.2023.5:张乐乐与王锐分手获取中国地质大学第33届学生科技论文阐明会三等奖。
6.2023.9:2021届王锐,2022届董傲男、Hamza Daud获取国际会议BIGS2023学术海报三等奖。
7.2023.9:2021届向子林博士在14届国际环境工程大会IAEG作念理论学术阐明,2022届董傲男和邢珂分手作国际学术海报。
河北经贸大学教务在线8.2023.11:2022届董傲男和邢珂分手获取2023年国度站科报会一等奖和三等奖,同期他们俩也获第34届科技阐明会一等奖和三等奖。获优秀指示称呼。
毕业生:
硕士:
2023年: 1. 罗万褀 (西北大学转博);2.郭衍昊(湖北省-地调局水环中心)
栽培布景
2012-2015东京大学新限制创成科学商量科 博士学位
2006-2009中国科学院地球科学院 硕士学位
2002-2006 青岛农业大学资环学院 学士学位
责任阅历
2021.12-于今,中国地质大学(武汉) 地质灾害国度荒野科学不雅测商量站
2020-2021 中国地质大学(武汉) 栽培部长江三峡库区地质灾害商量中心
2019-2020 日本学术振兴会 商量员
2016-2019 日本国立商量开导法东说念主 土木商量所 商量员
2015-2016 东京大学空间谍报中心 博士后
2011-2012 日本アカデミック エクスプレス株式会社 助理工程师
2010-2011 中国赴日本国留学生东北师范大学蓄意学校日语培训
2009-2010 广州奥格公司样子司理
社会兼职
学术兼职
学会任职
日本滑坡学会会员、日本砂防学会会员、日土产货球行星科学連合会员和国际工程地质与环境协会(IAEG)会员、好意思国地球物理学会(AGU)会员、欧洲地球科学学会(EGU)会员、中国地震学会地震灾害链专科委员会委员,中国地质协会毕生会员
国表里期刊编委
Frontiers in Earth Science (IF=3.34) 副主编
Geocarto International, Geomatics, Natural Hazards and Risk,Journal Mountain of Science, Journal of Geography and Geology 编委
地质科技通报、深地科学、地球科学 编委
Remote Sensing, NaturalHazards, Deep Underground Science and Engineering, Geoscience,Machine Learning and Knowledge Extraction, Frontiers in Earth Science, Sensors 专题主编
国际期刊审稿
Earth-Science Reviews, Geomorphology, Engineering Geology, Geoscience Frontiers, Science of The Total Environment, CATENA, Nature scientific report, Natural hazards, Remote sensing, Journal of Mountain Science, Theoretical and Applied Climatology, Bulletin of Engineering Geology and the Environment, Arabian Journal of Geosciences, Geocarto International, Journal of African Earth Sciences, Human and Ecological Risk Assessment, International Journal of Digital Earth, Geoscience, ISPRS International Journal of Geo-Information, The Egyptian Journal of Remote Sensing and Space Sciences, International Journal of Disaster Risk Science, Mathematical and Computational Applications, Engineering with Computers, The Professional Geographer, Advances in Space Research, Geosciences,Machine Learning and Knowledge Extraction等40多个SCI审稿东说念主。
主握样子及中枢骨干
1. 动水启动型滑坡启滑机制与判据课题(第二郑重东说念主)-子课题郑重东说念主,国度当然科学基金紧要样子(2021-2025) (42090054)
2. Coupling ensemble machine learning with physical parameters framework for landslide evaluation四川大学水力学与山区河流开导保护国度重心现实室基金资助样子(2021-2022)(SKHL2003)
3. 东说念主工智能地质灾害减灾防灾,中央高校高级次东说念主才科研经费(2021-2026)
4. 基于深度学习的山区流域多源地质灾害链掂量商量,四川大学水力学与山区河流开导保护国度重心现实室基金资助样子(2020-2021)(SKHL1903)
5. Cognitive modeling for dynamic long-term landslide assessment associated with extreme events in emergency preparedness and disaster management,日本学术振兴会(2019-2020) (1074088)
6. 基于地质量形成分对地表垮塌的发生与评价商量日本国土交通部 (2015-2018)
7. 深层滑坡监测不雅测时代商量,日本国土交通部萌芽 (2016-2018)
8. 基于地质灾害移动的毁伤掂量监视时代的开导商量,日本国土交通部重心(2015-2019)
9. 广东省地质灾害数据竖立 广东省科技厅(2006-2009)
10. 库岸滑坡地质灾害体智能识别时代 中国电建集团华东勘察联想商量院(2022-2024)(KY2021-ZD-03)
11. 紧要滑坡地质灾害演化机理与掂量预告 翻新群体 (2022-2024)(No.2022CFA002)
12. 国度高级次东说念主才规划 (2022-2025)(20233040018)
13. 武汉英才优秀后生东说念主才样子 (2023-2024)( 20233050043)
14. 万古候序列下的多场耦合库岸滑坡智能监测预警 三峡库区地质灾害栽培部现实室重心灵通基金(2023-2024)(2023KDZ02)
15. 湖北省襄阳市2024年度地质灾害监测台站竖立样子选点及联想 (2023-2024)
16. 云南2024年度1:1万地质灾害访问及数据库竖立 (2023-2024)
比年主要论文 (*代表通信,#共磨灭作)
1. Dou, Jie*, Yunus, A.P., Tien Bui, D., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Khosravi, K., Yang, Y., Pham, B.T., 2020. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2020.137320 (SCI=10.75 -ESI 1% 高被引)
2. Abdelaziz Merghadi1#, Ali P. Yunus2#, Dou Jie#*, Jim Whiteley, Binh Thai Pham. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance, Earth-Science Reviews, 207 (August): 103225. https://doi.org/10.1016/j.earscirev.2020.103225. (SCI=12.41 ESI 1% 高被引及热门论文)
3. Dou, Jie*, Yunus, A.P., Tien Bui, D., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Khosravi, K., Yang, Y., Pham, B.T., 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment 662, 332–346. doi: 10.1016/j.scitotenv.2019.01.221 (SCI=10.75 -ESI 1% 高被引)
4. Dou Jie*, Yunus, A.P., Bui, D.T., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Han, Z., Pham, B.T., 2019. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides. https://doi.org/10.1007/s10346-019-01286-5 (SCI=6.578-ESI 0.1% 高被引及 热门论文)
5. Dou, Jie*, et.al. Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM. Remote Sensing 2019, 11, doi:10.3390/rs11060638. (SCI=5.349 -ESI 1% 高被引)
6. Dou Jie*, Chang K-T*, Chen S, et al. 2015. Automatic Case-Based Reasoning Approach for Landslide Detection: Integration of Object-Oriented Image Analysis and a Genetic Algorithm. Remote Sensing 7:4318–4342. doi: 10.3390/rs70404318 (SCI=5.349)
7. Dou Jie*, Yunus, A.P., Xu, Y., Zhu, Z., Chen, C.-W., Sahana, M., Khosravi, K., Yang, Y., Pham, B.T., 2019. Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China. Natural Hazards 97, 579–609. https://doi.org/10.1007/s11069-019-03659-4 (SCI=2.427)
8. Chang, K.-T., Merghadi, A., Yunus, A.P., Pham, B.T., Dou Jie*. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Nature Scientific report vol. 9, no. 1, 2019, p. 12296, doi:10.1038/s41598-019-48773-2. (SCI=4.996, 当然 科学报说念Selected as Top 100 rank,ESI 1% 高被引)
9. Dou, Jie*, Li, Xia, Yunus, Ali P., et al. (2015). An Integrated Artificial Neural Network Model for the Landslide Susceptibility Assessment of Osado Island, Japan. Natural Hazards, 1–28. doi:10.1007/s11069-015-1799-2. (SCI=3.158)
10. Dou Jie*, Tien Bui, Dieu, P. Yunus, Ali et al (2015). Optimization of Causative Factors for Landslide Susceptibility Evaluation using Remote Sensing and GIS data in parts of Niigata, Japan, Plos one, 10.1371/journal.pone.0133262 (SCI=3.53)
11. Dou Jie*, Li X, Yunnus Ali, et al. (2015). Automatic detection of sinkhole collapses at finer resolutions using a multi-component remote sensing approach, Natural hazards DOI: 10.1007/s11069-015-1756-0. (SCI=3.158)
12. Hai-bo Li#, Yue-ren Xu#, Jia-wen Zhou#, Xie-kang Wang#, Hiromitsu Yamagishi, Dou, Jie#*. Preliminary analyses of a catastrophic landslide occurred on July 23, 2020, in Guizhou Province, China. Landslides. https://doi.org/10.1007/s10346-019-01334-0 (SCI=6.578)
13. Han, Zheng, Bin Su, Yange Li, Dou Jie, Weidong Wang, and Lianheng Zhao. Modeling the Progressive Entrainment of Bed Sediment by Viscous Debris Flows Using the Three-Dimensional SC-HBP-SPH Method, Water Research, 182,116031. https://doi.org/10.1016/j.watres.2020.116031(SCI =9.130 )
14. Ali P.Yunus; Xuanmei Fan, Xiaolu Tang; Dou Jie, Qiang Xu, Runqiu Huang. Decadal vegetation succession from MODIS reveals the spatiotemporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake, Remote Sensing of Environment, 2020 (SCI=13.850)
15. Yunus AP, Dou, Jie*, Song X, Avtar R (2019) Improved Bathymetric Mapping of Coastal and Lake Environments Using Sentinel-2 and Landsat-8 Images. Sensors 19:2788. https://doi.org/10.3390/s19122788 (SCI=3.23)
16. Dou Jie, Paudel U, Oguchi T, et al (2015). Differentiation of shallow and deep-seated landslides using support vector machines: a case study of the Chuetsu area, Japan (SCI) Terrestrial, Atmospheric and Oceanic Sciences. doi: 10.3319/TAO.2014.12.02.07(EOSI) (SCI=1.1)
17. Dou Jie, Qian, J., Chen, S., & Zhen, X. (2010). Object-based and case-based reasoning method for ground collapses detection. Journal of Image and Graphics, 1 5(6), 900–910. (In Chinese)
18. LV, Y., Le, Q., Bui, H.-B., Bui, X., Nguyen, H., Nguyen-Thoi, T., Dou Jie*, Song, X., 2020. A Comparative Study of Different Machine Learning Algorithms in Predicting the Content of Ilmenite in Titanium Placer. Appl. Sci. 10, 635. (SCI=2.217)
19. Zhu, Z., Wang, H., Peng, D., Dou, Jie*, 2019. Modeling the hindered settling velocity of a falling particle in a particle-fluid mixture by the Tsallis entropy theory. Entropy (SCI=2.305)
20. Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N.A., Nguyen, H., Dou Jie*, Song, X., Poi-Ngian, S. Application of a Hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) Model in Behavior Prediction of Channel Shear Connectors Embedded in Normal and High-Strength Concrete. Appl. Sci. 9, 5534. https://doi.org/10.3390/app9245534 (SCI=2.217)
21. Khosravi, K., Shahabi, H., Pham, B.T.*, Adamowski, J., Shirzadi, A., Pradhan, B., Dou, Jie*, Ly, H.-B., Gróf, G., Ho, H.L., Hong, H.*, Chapi, K., Prakash, I.A Comparative Assessment of Flood Susceptibility Modeling Using Multi-Criteria Decision-Making Analysis and Machine Learning Methods, 2019-Journal of Hydrology- (SCI=4.405 -ESI 1% 高被引)
22. Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Bahadori, A., Zandi, Y.; Salih, M.N.A.; Nguyen, H*., Dou, Jie*; Song, X.; Poi-Ngian, S. Application of a Hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) Model in Behavior Prediction of Channel Shear Connectors Embedded in Normal and High-Strength Concrete. Appl. Sci. 2019, 9, 5534. ( SCI=2.217)
23. Dou Jie*. et al (2018). A Comparative Study of the Binary Logistic Regression (BLR) and Artificial Neural Network (ANN) Models for GIS-Based Spatial Predicting Landslides at a Regional Scale. Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools: Volume 1: Fundamentals, Mapping and Monitoring (eds. Sassa, K. et al.) 139–151 (Springer International Publishing, 2018). doi:10.1007/978-3-319-57774-6_10
24. Zhu, Z. & Dou Jie* (2018). Current status of reclaimed water in China: An overview. Journal of Water Reuse and Desalination jwrd2018070. doi:10.2166/wrd.2018.070 (SCI=1.538)
25. Daniela Castro Camilo, Luigi Lombardoa, Martin Maib, Dou Jie, Raphaël Huser, 2017. Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model, 97:145-156. Environmental Modelling & Software. doi: 10.1016/j.envsoft.2017.08.003 (SCI=4.807)
26. 窦杰, et al.2010. 基于对象的遥感案例推理关节检测岩溶大地塌陷. 中国图象图形学报 15.06(2010):900-909.
2023年
27. 窦杰, et al. 2023. 机器学习在滑坡智能防灾减灾中的诈欺与发展趋势. 地球科学
28. Luo, W., Dou Jie*, Fu, Y., Wang, X., He, Y., Ma, H., Wang, R., & Xing, K. (2022). A Novel Hybrid LMD – ETS – TCN Approach for Predicting Landslide Displacement Based on GPS Time Series Analysis. Remote Sensing, 15(1), 229. https://doi.org/10.3390/rs15010229 (SCI=5.349, 高被引 ESI1%)
29. Xiang Z, Dou Jie*, Yunus AP, et al (2023) Vegetation-landslide nexus and topographic changes post the 2004 Mw 6.6 Chuetsu earthquake. CATENA 223:106946. https://doi.org/10.1016/j.catena.2023.106946 (SCI=6.367 )
30. 郭衍昊 ,窦杰 *, et al. 2023. 机基于优化负样本采样策略的梯度普及有筹划树无意丛林与无意丛林梯度普及有筹划树模子的汶川同震滑坡易发性评价. 地质科技通报
31. 何雨健 ,窦杰 *, et al. 2023. 国表里免像控无东说念主机航测软件在数字滑坡中的诈欺效果对比-以三峡库区黄土坡滑坡为例. 中国地质灾害与防治学报
32. Ni W, Zhao L, Zhang L, Dou Jie* (2023) Coupling Progressive Deep Learning with the AdaBoost Framework for Landslide Displacement Rate Prediction in the Baihetan Dam Reservoir, China. Remote Sens 15:2296. https://doi.org/10.3390/rs15092296(SCI=5.349)
33. Dong A, Dou Jie* , Fu Y, et al (2023) Unraveling the Evolution of Landslide Susceptibility: A Systematic Review of 30-Years of Strategic Themes and Trends. Geocarto Int 38:1–64. https://doi.org/10.1080/10106049.2023.2256308
国际会议理论阐明
1. Estimating scale effects of multiple DEMs for landslide geohazard map using GIS-based artificial intelligence models, AGU, 2019, SanFrancisco, USA
2. GeohazardstriggeredbydeadlyHokkaidoIburi-TobuEarthquake(September 6, 2018, Mw6.7), Hokkaido, Japan,12thARCof IAEG,2019, Jeju, SouthKorean
3. EstimationofDistributionofTephraFallDepositUsingtheInterpolationMethodBased on Multi-observation Data, Interpraevent,2018,Toyama,Japan
4.High predictor dimensionality in slope-unit-based landslide susceptibility models throughLASSO-penalized Generalized Linear Model,2017,EGU General Assembly, Vienna, Austria
5.Ellipse-approximated isopach(EAI) approach forassessing ashfall deposit at the active Sakurajima volcano, Japan,2016,Cities onVolcanoes9,Puerto Varas,Chile
6. Spatial resolution effects of digital terrain models on landslide susceptibility analysis,2016,Prague, CzechRepublic
7. Analysis of the landslides in Hiroshima caused by the typhoon based on bivariate statistical landslide susceptibility,2015, JpGU, Makuhahri, Japan
8. Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan, 2014, ICEO&SI, Taiwan, Taiwan
9. GIS-Based Landslide Susceptibility Mapping Using a Certainty Factor Model and Its Validation in the Chuetsu Area, Central Japan, 2014, The Third World Landslide Forum, Beijing, China
10. Back propagation (BP) model optimized by genetic algorithms (GA) for predicting landslides, IGU 2013 - Kyoto regional conference, Japan
11. Using Back-Propagation networks to predict the landslides based on 2m Lidar DEM, 2013, JpGU, Makuahri, Japan
12. Application of Support Vector Machines to predict landslides based on Lidar DEM: the Chuetsu earthquake case study, Japan, 2013, ICEO&SI, Taiwan.
软件著述权
1.三峡库区地质灾害及时监测系统软件[简称:地灾监测系统] V1.0, 2021.9.25
2.基于和声理解-支援向量致密的滑坡时候序各位移智能掂量软件 V1.0,2023.5.9 窦杰,王锐,梁文欣
3.基于轻量级编解码语义分割网罗的滑坡智能识别软件V1.0,2023. 窦杰, 赵留园 ,李长冬, 董傲男, 王锐, 张乐乐, 邢珂
4.基于正式力机制的SE-VGG16的同震滑坡易发性评价软件V1.0,2023. 窦杰,李长冬, 董傲男, 王锐, 邢珂,杨玉川
5.基于优化负样本采样策略的Resnet深度学习模子滑坡易发性评价软件V1.0,2023. 窦杰, 董傲男,王锐,张乐乐,邢珂
6.基于是曲时挂念神经网罗的滑坡万古序监测数据智能掂量软件V1.0,2023. 王锐,窦杰,梁文欣,董傲男,周凡皓
7.和会挂念神经网罗与遗传算法优化SVR模子的库岸滑坡时候序各位移智能掂量软件V1.0,2023. 梁文欣,王锐,窦杰,周凡皓
8.多智能体耦合深度学习的滑坡时候序各位移组合掂量软件,2023. 王锐,窦杰,梁文欣,向子林,周凡皓
9.基于数据无意增强的ResUNet深度学习模子滑坡罅隙识别软件,2023. 窦杰,李长冬,赵留园 ,董傲男,张乐乐
10.基于多统计参数的二维节理鄙俗度系数非线性掂量软件,2023. 梁文欣,窦杰,董傲男
11.基于树结构的东说念主工智能滑坡易发性评价软件V1.0,2024. 窦杰,龚松林,马豪,董傲男,张乐乐
发明专利
1.基于AdaBoost框架的深度学习滑坡位移掂量关节, 2023 肯求. 窦杰, 梁文欣, 董傲男, 王锐, 罗万祺
2.一种基于法式无味变换法的边坡可靠性分析时代, 2023 肯求. 窦杰, 向子林
2.基于GBDT的二维节理鄙俗度系数非线性笃定关节, 2024 肯求. 窦杰 梁文欣 汤红
获取荣誉
1. 国度高级次东说念主才、2021年入选湖北省高级次东说念主才规划、2020年中国地质大学百东说念主规划、武汉市英才规划 (2022)、第18届留日中国东说念主 优秀商量.翻新效用赏赐奖 (2022)、入选人人前2%顶尖科学家榜单(2022、2023)、高被引学者(2023)
2. 2018年获日本学术振兴会(JSPS)非常商量基金
3. 2021年获获取日本第17届地震工程大会- "Early Career Award"
4. 2011年获日本政府(文部科学省-MEXT)博士生奖学金
5. 2014年东京大学新限制创成科学商量科科学商量基金
6. 2019年,论文“Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan” published in TAO Journal has won the Most Cited Article Award in 2019。入选SCI杂志TAO最多援用奖
7. 2020年,论文“Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques”。入选百篇当然科学阐明-Top 100 Nature Scientific Reports paper
8. 2008年中科院学术阐明一等奖